Prof. Dr. Thomas Heine from Technical University Dresden
Precision Materials
Precision chemistry is the basis for emerging materials with unprecedented physical phenomena. Precision materials combine local atomic precision with long-range order. Precision synthesis can link well-defined molecular building blocks to form long-range crystalline structures. This approach offers to combine the plethora of molecular functionality with the intrinsic properties of all mathematically possible lattices. Specially designed precision materials offer a variety of physical and chemical properties, such as topological features of the band structure (Dirac points, topologically flat bands, topological insulators), rich exciton physics, tunable electronic and optoelectronic properties, magnetic order, and highly selective catalytic and photocatalytic properties. I will illustrate the raise of precision materials on a range of examples. They will include carbon nanoribbons, where there the edge decoration determines if they are topologically trivial or not [1].
In twisted transition metal dichalcogenide bilayers we show the emergence of superlattices that determine the band structure near the fermi level [2]. In the emerging class of two-dimensional organic crystals [3] we demonstrate metallic behaviour, [4] highly tunable photocatalytic properties [5] and metal-free magnetism [6]. Finally, I will show how the activity of isolated Cu(I) sites in metal- organic frameworks can be boosted to become selective for the separation of helium isotopes [7].
References
[1] Structure-Imposed Electronic Topology in Cove-Edged Graphene Nanoribbons. F. M. Arnold, T.-J. Liu, A. Kuc, T. Heine, Phys. Rev. Lett. 129 (2022) 216401.
[2] Implementing electronic signatures of graphene and hexagonal boron nitride in twisted bilayer molybdenum disulfide, F. M. Arnold, A. Ghasemifard, A. Kuc, T. Heine, Mater. Today 73 (2024) 96- 104
[3] Electronic and quantum properties of organic two-dimensional crystals, Z. Wang, M. Wang, T. Heine, X. Feng, Nat. Rev. Mater. 10 (2025) 147-166
[4] Two-dimensional polyaniline crystal with metallic out-of-plane conductivity, T. Zhang, S. Chen, P. S.. Petkov, P. Zhang, H. Qi, N. N. Nguyen, W. Zhang, J. Yoon, P. Li, T. Brumme, A. Alfonsov, Z. Liao, M. Hambsch, S. Xu, L. Mester, V. Kataev, B. Büchner, S. C. B. Mannsfeld, E. Zschech, S. S. P. Parkin, U. Kaiser, T. Heine, R. Dong, R. Hillenbrand, X. Feng, Nature 638 (2025) 411-417
[5] Physics and Chemistry of Two-Dimensional Triangulene-Based Lattices, H. Yu, Y. Jing, T. Heine, Acc. Chem. Res. 58 (2025) 61-72
[6] Prediction of metal-free Stoner and Mott-Hubbard magnetism in triangulene-based two- dimensional polymers, H. Yu, T. Heine, Sci. Adv. 10 (2024) eadq7954
[7] Strong Cu(I)–He interaction at open metal sites enables isotope-selective helium adsorption, E. Dongmo, T. Wulf, S. Das, T. Heine, ResearchSquare preprint, https://doi.org/10.21203/rs.3.rs-7214188/v1.